Events Calendar

PhD Defense | Gustav Strandberg

Modelling regional climate vegetation inter-actions in Europe – A palaeo perspective

Gustav Strandberg
Swedish Meteorological and Hydrological Institute (SMHI)
Department of Meteorology, Stockholm University, Sweden | MISU

Time: Thursday, May 11, 10h00

Place: De Geersalen, Geovetenskapens hus, Svante Arrheniusväg 14


Studies in paleoclimate are important because they give us knowledge about how the climate system works and puts the current climate change in necessary perspective. By studying (pre)historic periods we increase our knowledge not just about these periods, but also about the processes that are important for climatic variations and changes.

This thesis deals mainly with the interaction between climate and vegetation. Vegetation changes can affect climate in many different ways. These effects can be divided into two main categories: biogeochemical and biogeophysical processes. This thesis studies the biogeophysical effects of vegetation changes on climate in climate models. Climate models are a necessary tool for investigating how climate responds to changes in the climate system, as well as for making predictions of future climate. The biogeophysical processes are strongly related to characteristics of the land surface. Vegetation changes alter the land surface’s albedo (ability to reflect incoming solar radiation), roughness and evapotranspiration (the sum of evaporation and tran-spiration), which in turn affects the energy fluxes between the land surface and the atmosphere and thereby the climate. It is not, however, evident in what way; denser vegetation (e.g. forest instead of grassland) gives decreased albedo, which results in higher temperature, but also increased evapotranspiration, which contrastingly results in lower temperature.

Vegetation changes are in this thesis studied in four different (pre)historic periods: two very cold periods with no human influence (c. 44,000 and 21,000 years ago), one warm period with minor human influence (c. 6,000 years ago) and a cold period with substantial human influence (c. 200 years ago). In addition to that the present climate is studied. The combination of these periods gives an estimate of the effect of both natural and anthropogenic vegetation on climate in different climatic contexts. The results show that vegetation changes can change temperature with 1–3 °C depending on season and region. The response is not the same everywhere, but depends on local properties of the land surface. During the winter half of the year, the albedo effect is usually most important as the difference in albedo between forest and open land is very large. During the summer half of the year the evapotranspiration effect is usually most important as differences in albedo between different vegetation types are smaller. A prerequisite for differences in evapotranspiration is that there is sufficient amount of water available. In dry regions, evapotranspiration does not change much with changes in vegetation, which means that the albedo effect will dominate also in summer.

The conclusion of these studies is that vegetation changes can have a considerable effect on climate, comparable to the effect of increasing amounts of greenhouse gases in scenarios of future climate. Thus, it is important to have an appropriate description of the vegetation in studies of past, present and future climate. This means that vegetation has the potential to work as a feedback mechanism to natural climatic variations, but also that man can alter climate by altering the vegetation. It also means that mankind may have influenced climate before we started to use fossil fuel. Consequently, vegetation changes can be used as a means to mitigate climate change locally.




JEvents v2.2.3   Copyright © 2006-2012

Bolin Centre for Climate Research
A collaboration between Stockholm University, KTH and the Swedish Meteorological and Hydrological Institute | Web administrator This email address is being protected from spambots. You need JavaScript enabled to view it.