http://bolin.su.se/data/ellerton-2022-osl-queensland-1 Daniel Ellerton, Tammy Rittenour, Andrew Roberts, James Shulmeister, Xiang Zhao, Pengxiang Hu, Tetsuro Sato, Hirokuni Oda Paleomagnetic and optically stimulated luminescence data from Fraser Island and the Cooloola Sand Mass, Queensland, Australia Bolin Centre Database 2022 Datafile Terrestrial Geochronology Geochronology Paleomagnetism Optically stimulated luminescence OSL Dunes Dating Fraser Island Cooloola Sand Mass Middle Pleistocene Transition Matuyama/Bruhnes boundary Earth science > Land surface > Geomorphic landforms/processes > Aeolian landforms > Dunes > Parabolic dune Daniel Ellerton 2022-09-13T12:34:16+00:00 English 1 The data are supplied in one excel spreadsheet file (xlsx) with four individual sheets: PCA results includes principle components used to calculate characteristic remanent magnetization (ChRM) directions, Demagnetization steps includes temperature steps used for thermal demagnetization, Sample demagnetization data includes demagnetization results for all samples analysed and Luminescence data includes location data, equivalent dose and dose rate measurements. ##### Paleomagnetic data Alternating Field (AF) demagnetization was carried out at 23 steps of 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120, and 140 mT with the remaining natural remnant magnetization (NRM) measured after each step. Thermal demagnetization was carried out at steps of 80, 85, 90, 95, 100, 105, 110, 115, and 120 °C in Japan. Most samples were largely demagnetized at 120°C, which confirms the importance of goethite in these samples. In other cases, the NRM remained partially demagnetized, so further demagnetization was carried out as needed at higher temperature steps of 140, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 680 and 700 °C at the Australian National University. For stably magnetized samples, a characteristic remanent magnetization (ChRM) direction was calculated using principal component analysis following the method of Heslop and Roberts (2016). For sites with multiple stably magnetized samples, site mean palaeomagnetic directions were calculated with errors associated with ChRM directions propagated into the mean directions following the method of Heslop and Roberts (2020). ##### OSL measurements OSL measurements conducted using Single-aliquot regenerative dose (SAR) analysis performed on small-aliquot (1-mm diameter, ~10 grains per disk) samples using Risø TL/OSL Model DA-20 readers with blue-green light emitting diodes (LEDs) (470±30 nm) as the stimulation source. The luminescence signal was measured through 7.5 mm UV filters (U-340) over 40⁠ – ⁠60 seconds (250 channels) at 125 °C with LEDs at 70⁠ – ⁠90% power (~45 mW/cm²) and was calculated by subtracting the average of the last 5 seconds (background signal) from the first 0.7 seconds (4 channels) of the signal decay curve. For samples with 1 Gy, or natural De greater than the highest regenerative dose given. Errors on equivalent dose (DE) are reported at two sigma standard error and age estimates are reported at one sigma standard error. Reported uncertainties include errors related to instrument calibration, dose rate and equivalent dose calculations and errors were calculated in quadrature using the methods of Aitken and Alldred (1972) and Guérin et al. (2015). OSL measurements and analysis were conducted at the Utah State University Luminescence Laboratory. Single-aliquot regenerative dose (SAR) analysis was performed on small aliquots (~10 grains) of 180⁠ – ⁠250 µm quartz sand using a Risø TL/OSL Model DA-20 readers with blue-green light emitting diodes (LEDs) (470±30 nm) as the stimulation source. Dose rate calculations were performed on representative sub-samples using ICP-MS and ICP-AES to determine the concentrations of K, Rb, Th and U in the bulk sediment surrounding the samples. Paleomagnetic analysis was conducted on pieces of orientated ferricrete collected from outcrop at the Geological Survey of Japan, Tsukuba, Japan, where a Natsuhara-Giken oven with precise temperature control was used for thermal demagnetization with NRM measured on a 2-G Enterprises superconducting rock magnetometer system. Additional analyses were performed at the Australian National University using a 2-G Enterprises superconducting rock magnetometer.