1 Instrumentation

The TRS met station consisted of the following instruments during 2002

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Serial number</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt100</td>
<td></td>
<td>in Stevenson screen</td>
</tr>
<tr>
<td>Pt100</td>
<td></td>
<td>in Young screen</td>
</tr>
<tr>
<td>T/Rh</td>
<td></td>
<td>at 2 m (Young screen)</td>
</tr>
<tr>
<td>Young Wind Monitor</td>
<td></td>
<td>at 3 m</td>
</tr>
<tr>
<td>LiCor Li-200SB pyranometer</td>
<td></td>
<td>at 2 m</td>
</tr>
<tr>
<td>Tipping bucket precipitation</td>
<td></td>
<td>at 2 m</td>
</tr>
<tr>
<td>gauge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventilated T/Rh</td>
<td></td>
<td>at 2 m</td>
</tr>
<tr>
<td>CR10 data logger</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 Notes on the station data

- Problems with ventilated T/Rh throughout the year. Although less NaN values in ventilated Rh many unrealistic values exist in the series.

- Problems (unknown) with Pt100 sensors in Young and Stevenson screens in the period 2002-09-11 17:00:00 to 2002-11-23 15:00:00. Bad data (but not NaN exist beyond the period.

- Based on the graph, it is evident that the Young shield Pt100 is not working well in December. This can be a program constants, reference resistor or zero offset calibration issue.

3 Data coverage

- Relative humidity (ventilated) data missing from
 2002-01-13 21:00:00 to 2002-01-14 07:00:00
 2002-01-14 09:00:00 to 2002-01-14 13:00:00
 2002-01-14 16:00:00 to 2002-01-14 20:00:00
 2002-04-22 22:00:00 to 2002-04-23 01:00:00
 2002-04-23 14:00:00 to 2002-04-24 01:00:00
Temperature (ventilated unless stated otherwise) data missing from:

- 2002-01-05 15:00:00
date range from 2002-01-05 23:00:00 to 2002-01-06 00:00:00
date range from 2002-01-06 00:00:00 to 2002-01-08 04:00:00
date range from 2002-01-10 11:00:00 to 2002-02-12 02:00:00
date range from 2002-02-12 04:00:00 to 2002-02-24 16:00:00
date range from 2002-02-24 19:00:00 to 2002-02-25 15:00:00
date range from 2002-02-25 17:00:00 to 2002-02-26 04:00:00
date range from 2002-03-01 22:00:00 to 2002-03-02 18:00:00
date range from 2002-03-02 09:00:00 to 2002-03-03 10:00:00
date range from 2002-03-03 12:00:00 to 2002-03-03 15:00:00
date range from 2002-03-04 04:00:00 to 2002-03-04 19:00:00
date range from 2002-03-08 19:00:00 to 2002-03-13 15:00:00
date range from 2002-03-13 17:00:00 to 2002-03-13 19:00:00
date range from 2002-03-13 22:00:00 to 2002-03-13 23:00:00
date range from 2002-03-14 16:00:00 to 2002-03-22 16:00:00
date range from 2002-03-22 18:00:00 to 2002-03-23 00:00:00
date range from 2002-03-23 02:00:00 to 2002-03-24 16:00:00
date range from 2002-03-24 18:00:00 to 2002-03-24 19:00:00
date range from 2002-03-24 23:00:00 to 2002-03-25 00:00:00
date range from 2002-03-25 05:00:00 to 2002-03-28 02:00:00
date range from 2002-03-28 04:00:00 to 2002-03-28 08:00:00
date range from 2002-03-28 11:00:00 to 2002-03-28 13:00:00
date range from 2002-03-29 09:00:00 to 2002-03-29 11:00:00
date range from 2002-03-29 14:00:00 to 2002-03-31 14:00:00
date range from 2002-04-21 13:00:00 to 2002-04-28 22:00:00
date range from 2002-04-29 10:00:00 to 2002-04-29 20:00:00
date range from 2002-04-30 07:00:00 to 2002-04-30 18:00:00
date range from 2002-05-04 14:00:00 to 2002-05-04 20:00:00
date range from 2002-05-05 11:00:00 to 2002-05-06 00:00:00
date range from 2002-05-06 00:00:00 to 2002-05-06 17:00:00
date range from 2002-05-07 09:00:00 to 2002-05-07 10:00:00
date range from 2002-09-11 17:00:00 to 2002-11-23 15:00:00
date range from 2002-09-12 20:00:00 to 2002-11-22 14:00:00

Daily data missing from:

- 2002-09-12 00:00:00 to 2002-11-24 00:00:00

'Synoptic' data missing from:

- 2002-09-11 19:00:00 to 2002-11-23 13:00:00
4 Notes on data storage

Example of hourly data:
101,2002,185,1300,10.03,9.85,9.93,50.89,4.208,277.4,.164,472.5,0,10.77,61.98,7.1,1224

<table>
<thead>
<tr>
<th>Column</th>
<th>Example data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:</td>
<td>101</td>
<td>ID</td>
</tr>
<tr>
<td>02:</td>
<td>2002</td>
<td>Year</td>
</tr>
<tr>
<td>03:</td>
<td>185</td>
<td>Day of Year</td>
</tr>
<tr>
<td>04:</td>
<td>1300</td>
<td>hour-minute (hhmm)</td>
</tr>
<tr>
<td>05:</td>
<td>10.03</td>
<td>2 Pt100 T in Stevenson screen</td>
</tr>
<tr>
<td>06:</td>
<td>9.85</td>
<td>3 T in Young screen</td>
</tr>
<tr>
<td>07:</td>
<td>9.93</td>
<td>4 Pt100 in new Young screen</td>
</tr>
<tr>
<td>08:</td>
<td>50.89</td>
<td>5 Rh in Young screen</td>
</tr>
<tr>
<td>09:</td>
<td>4.208</td>
<td>6 Mean horizontal wind speed</td>
</tr>
<tr>
<td>10:</td>
<td>277.4</td>
<td>7 resultant mean wind direction</td>
</tr>
<tr>
<td>11:</td>
<td>.164</td>
<td>8 Standard deviation of wind direction</td>
</tr>
<tr>
<td>12:</td>
<td>472.5</td>
<td>9 Global radiation</td>
</tr>
<tr>
<td>13:</td>
<td>0</td>
<td>10 Precipitation/SR50</td>
</tr>
<tr>
<td>14:</td>
<td>10.77</td>
<td>11 ventilated T</td>
</tr>
<tr>
<td>15:</td>
<td>61.98</td>
<td>12 ventilated Rh</td>
</tr>
<tr>
<td>16:</td>
<td>7.1</td>
<td>13 hourly max wind speed</td>
</tr>
<tr>
<td>17:</td>
<td>1224</td>
<td>14 time for max wind speed</td>
</tr>
</tbody>
</table>

Example of daily data summaries:
124,2002,185,2400,8.84,8.78,8.9,60.56,11.38,1520,6.605,2342,12.5,503,3.517,306.5,148.8,0,13.9,9.61,70.4

<table>
<thead>
<tr>
<th>Column</th>
<th>Example data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:</td>
<td>124</td>
<td>ID</td>
</tr>
<tr>
<td>02:</td>
<td>2002</td>
<td>Year</td>
</tr>
<tr>
<td>03:</td>
<td>185</td>
<td>Day of Year</td>
</tr>
<tr>
<td>04:</td>
<td>2400</td>
<td>hour-minute (hhmm)</td>
</tr>
<tr>
<td>05:</td>
<td>8.84</td>
<td>2 Daily average T in Stevenson screen</td>
</tr>
<tr>
<td>06:</td>
<td>8.78</td>
<td>3 Daily T from T/Rh in Young screen</td>
</tr>
<tr>
<td>07:</td>
<td>8.9</td>
<td>4 Daily T from T/Rh in Young screen</td>
</tr>
<tr>
<td>08:</td>
<td>60.56</td>
<td>5 daily average humidity in Young screen</td>
</tr>
<tr>
<td>09:</td>
<td>11.38</td>
<td>6 Daily maximum temperature in Young screen</td>
</tr>
<tr>
<td>10:</td>
<td>1520</td>
<td>7 hhmm for maximum daily temperature</td>
</tr>
<tr>
<td>11:</td>
<td>6.605</td>
<td>8 Daily minimum temperature in Young screen</td>
</tr>
<tr>
<td>12:</td>
<td>2342</td>
<td>9 hhmm for minimum daily temperature</td>
</tr>
<tr>
<td>13:</td>
<td>12.5</td>
<td>10 Maximum wind speed</td>
</tr>
<tr>
<td>14:</td>
<td>503</td>
<td>11 hhmm for maximum wind speed</td>
</tr>
<tr>
<td>15:</td>
<td>3.517</td>
<td>12 Average wind speed</td>
</tr>
<tr>
<td>16:</td>
<td>306.5</td>
<td>13 Average wind direction</td>
</tr>
<tr>
<td>17:</td>
<td>148.8</td>
<td>14 Incoming radiation</td>
</tr>
<tr>
<td>18:</td>
<td>0</td>
<td>15 Totalized precipitation</td>
</tr>
<tr>
<td>19:</td>
<td>13.9</td>
<td>16 Battery voltage</td>
</tr>
<tr>
<td>20:</td>
<td>9.61</td>
<td>17 Average ventilated temperature</td>
</tr>
<tr>
<td>21:</td>
<td>70.4</td>
<td>18 Average ventilated relative humidity</td>
</tr>
</tbody>
</table>

Example of 'Synoptic' output:
103,2002,185,1300,10.04
<table>
<thead>
<tr>
<th>Column</th>
<th>Example data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:</td>
<td>103</td>
<td>ID</td>
</tr>
<tr>
<td>02:</td>
<td>2002</td>
<td>Year</td>
</tr>
<tr>
<td>03:</td>
<td>185</td>
<td>Day of Year</td>
</tr>
<tr>
<td>04:</td>
<td>1300</td>
<td>hour-minute (hhmm)</td>
</tr>
<tr>
<td>05:</td>
<td>10.04</td>
<td>Pt100 in Young screen</td>
</tr>
</tbody>
</table>

5 Data files and content

TRSmet2002.csv Raw data file

TRSmet_2002_Precipitation.csv
Date-time, Precipitation
2002-01-01 01:00:00,0.00

TRSmet_2002_Radiation.csv
Date-time, Global radiation
2002-01-01 01:00:00,-0.21

TRSmet_2002_Relative_humidity.csv
Date-time, hourly average Rh, ventilated Rh
2002-01-01 01:00:00,55.8,73.0

TRSmet_2002_Temperature.csv
Date-time, hourly average T (Stevenson), hourly average T (Young), hourly average T/Rh (Young), ventilated (T/Rh)
2002-01-01 01:00:00,-12.61,-12.67,-11.84,-11.87

TRSmet_2002_Wind.csv
Date-time, Mean horizontal wind speed, resultant mean wind direction, hourly max wind speed, time of max wind spd
2002-01-01 01:00:00,3.5,301.5,0.1550,9.66,2

TRSmet_2002_Daily_data.csv
Data columns follows description above
2002-01-02 00:00:00,-14.54,-14.19,-13.66,41.4,-9.82,557,-18.87,2240,9.7,2,2.3,342.1,0.4,0.0,13.93

TRSmet_2002_Synop_data.csv
Date-time, sample temperature
2002-01-01 01:00:00,-13.86

The data collected during 2002 is summarized the figure 1 and Table 1.
Figure 1: Summary of meteorological data from Tarfala Research Station automatic weather station 2002.
Table 1: Monthly averages of meteorological parameters from the Tarfala Research Station automatic weather station 2002.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average air temperature (Stevenson)</td>
<td></td>
</tr>
<tr>
<td>(°C)</td>
<td>−17.3</td>
<td>−35.7</td>
<td>−61.7</td>
<td>−6.8</td>
<td>1.0</td>
<td>6.7</td>
<td>7.4</td>
<td>−15.4</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−19.1</td>
</tr>
<tr>
<td>n</td>
<td>743</td>
<td>671</td>
<td>767</td>
<td>743</td>
<td>743</td>
<td>743</td>
<td>743</td>
<td>743</td>
<td>767</td>
<td>−</td>
<td>−</td>
<td>767</td>
</tr>
<tr>
<td>Average air temperature (Young)</td>
<td></td>
</tr>
<tr>
<td>(°C)</td>
<td>−17.0</td>
<td>−35.6</td>
<td>−61.5</td>
<td>−6.6</td>
<td>1.1</td>
<td>6.7</td>
<td>7.3</td>
<td>−15.4</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−18.8</td>
</tr>
<tr>
<td>n</td>
<td>743</td>
<td>671</td>
<td>767</td>
<td>743</td>
<td>743</td>
<td>743</td>
<td>743</td>
<td>743</td>
<td>767</td>
<td>−</td>
<td>−</td>
<td>767</td>
</tr>
<tr>
<td>Positive degree sum</td>
<td></td>
</tr>
<tr>
<td>(°C)</td>
<td>89</td>
<td>0</td>
<td>0</td>
<td>384</td>
<td>1700</td>
<td>5293</td>
<td>6453</td>
<td>7946</td>
<td>2036</td>
<td>78</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>n</td>
<td>117</td>
<td>2</td>
<td>211</td>
<td>437</td>
<td>738</td>
<td>743</td>
<td>767</td>
<td>471</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Average relative humidity</td>
<td></td>
</tr>
<tr>
<td>(%)</td>
<td>62.5</td>
<td>67.2</td>
<td>58.4</td>
<td>67.7</td>
<td>62.3</td>
<td>57.4</td>
<td>70.6</td>
<td>60.1</td>
<td>69.5</td>
<td>59.7</td>
<td>57.6</td>
<td>51.6</td>
</tr>
<tr>
<td>n</td>
<td>743</td>
<td>671</td>
<td>767</td>
<td>743</td>
<td>743</td>
<td>743</td>
<td>743</td>
<td>743</td>
<td>767</td>
<td>743</td>
<td>767</td>
<td>743</td>
</tr>
<tr>
<td>Average incoming global radiation</td>
<td></td>
</tr>
<tr>
<td>(W m⁻²)</td>
<td>2.4</td>
<td>11.5</td>
<td>50.7</td>
<td>97.2</td>
<td>158.0</td>
<td>158.3</td>
<td>117.4</td>
<td>108.8</td>
<td>52.3</td>
<td>28.7</td>
<td>5.5</td>
<td>2.6</td>
</tr>
<tr>
<td>n</td>
<td>743</td>
<td>671</td>
<td>767</td>
<td>743</td>
<td>743</td>
<td>743</td>
<td>743</td>
<td>743</td>
<td>767</td>
<td>743</td>
<td>767</td>
<td>743</td>
</tr>
<tr>
<td>Global incoming energy sum</td>
<td></td>
</tr>
<tr>
<td>(W m⁻²)</td>
<td>1805</td>
<td>7706</td>
<td>38927</td>
<td>72230</td>
<td>117415</td>
<td>117614</td>
<td>87216</td>
<td>83490</td>
<td>38862</td>
<td>21976</td>
<td>4065</td>
<td>1984</td>
</tr>
<tr>
<td>n</td>
<td>714</td>
<td>643</td>
<td>589</td>
<td>651</td>
<td>740</td>
<td>743</td>
<td>743</td>
<td>678</td>
<td>731</td>
<td>767</td>
<td>702</td>
<td>765</td>
</tr>
<tr>
<td>Totalized precipitation</td>
<td></td>
</tr>
<tr>
<td>(mm)</td>
<td>13.28</td>
<td>0.00</td>
<td>3.04</td>
<td>33.92</td>
<td>3.36</td>
<td>0.32</td>
<td>95.20</td>
<td>58.08</td>
<td>134.88</td>
<td>1.12</td>
<td>0.00</td>
<td>0.16</td>
</tr>
<tr>
<td>n</td>
<td>743</td>
<td>671</td>
<td>767</td>
<td>743</td>
<td>743</td>
<td>743</td>
<td>743</td>
<td>743</td>
<td>767</td>
<td>743</td>
<td>767</td>
<td>743</td>
</tr>
<tr>
<td>Average wind speed</td>
<td></td>
</tr>
<tr>
<td>(m s⁻¹)</td>
<td>4.5</td>
<td>3.6</td>
<td>3.7</td>
<td>3.0</td>
<td>3.2</td>
<td>2.6</td>
<td>2.6</td>
<td>2.8</td>
<td>3.5</td>
<td>2.3</td>
<td>2.1</td>
<td>4.0</td>
</tr>
<tr>
<td>n</td>
<td>743</td>
<td>671</td>
<td>767</td>
<td>743</td>
<td>743</td>
<td>743</td>
<td>743</td>
<td>743</td>
<td>767</td>
<td>743</td>
<td>767</td>
<td>743</td>
</tr>
</tbody>
</table>
Logger program

5.1 Program valid for the year (copy from 2001)

;{CR10}
;=================================
; TARFALA MET STATION
; based on program tarmO898 from 6. August 1998
; NEW: output hourly max wind
; Regine Hock, 5 May 2001
;=================================
;{CR10}

*Table 1 Program

 01: 10.0000 Execution Interval (seconds)

1: Batt Voltage (P10)
 1: 10 Loc [Batteri_V]

2: IF (X<>F) (P89)
 1: 10 X Loc [Batteri_V]
 2: 4 <
 3: 9.7 F
 4: 0 Go to end of Program Table

;======== TEMPERATURE 1 - PT100 in weather hut ===========

3: 3W Half Bridge (P7)
 1: 1 Reps
 2: 33 25 mV 50 Hz Rejection Range
 3: 1 SE Channel
 4: 2 Excite all reps w/Exchan 2
 5: 2100 mV Excitation
 6: 21 Loc [Rs_Ro_T1]
 7: 100 Mult
 8: 0.0000 Offset

;======== TEMPERATURE 2 - PT100 in radiation shield =========

4: 3W Half Bridge (P7)
 1: 1 Reps
 2: 33 25 mV 50 Hz Rejection Range
 3: 3 SE Channel
 4: 2 Excite all reps w/Exchan 2
 5: 2100 mV Excitation
 6: 22 Loc [Rs_Ro_T2]
 7: 100.00 Mult
 8: 0.0000 Offset

;=== calculate Temp 1 and Temp 2 from Rs/Ro ================

5: Temperature RTD (P16)
 1: 2 Reps
 2: 21 R/R0 Loc [Rs_Ro_T1]
 3: 1 Loc [T1_bur__.C]
 4: 1 Mult
 5: 0.0000 Offset

6: Do (P86)
 1: 41 Set Port 1 High
;======= Temperature Rotronic =========================
7: Volt (Diff) (P2)
 1: 1 Reps
 2: 35 2500 mV 50 Hz Rejection Range
 3: 3 DIFF Channel
 4: 3 Loc [T3_Rot__C]
 5: 0.1 Mult
 6: 0.0000 Offset

;======= RELATIVE HUMIDITY Rotronic ===============
8: Volts (SE) (P1)
 1: 1 Reps
 2: 35 2500 mV 50 Hz Rejection Range
 3: 7 SE Channel
 4: 4 Loc [rH_Rot___]
 5: 0.1 Mult
 6: 0.0 Offset

;======= VENTILATED TEMPERATURE SENSOR (Vaisala PT100) ========
9: 3W Half Bridge (P7)
 1: 1 Reps
 2: 33 25 mV 50 Hz Rejection Range
 3: 11 SE Channel
 4: 3 Excite all reps w/Exchan 3
 5: 2100 mV Excitation
 6: 23 Loc [Rs_Ro_ven]
 7: 100 Mult
 8: 0.0000 Offset

10: Temperature RTD (P16)
 1: 1 Reps
 2: 23 R/R0 Loc [Rs_Ro_ven]
 3: 11 Loc [TempVent]
 4: 1 Mult
 5: 0.0000 Offset

;======= RELATIVE HUMIDITY (VENTILATED SENSOR) ============
11: Volts (SE) (P1)
 1: 1 Reps
 2: 35 2500 mV 50 Hz Rejection Range
 3: 8 SE Channel
 4: 12 Loc [HumVent]
 5: 0.1 Mult
 6: 0.0 Offset

;============= WIND SPEED ===================
12: Pulse (P3)
 1: 1 Reps
 2: 1 Pulse Input Channel
 3: 21 Low Level AC, Output Hz
 4: 5 Loc [Vhast_m_s]
 5: 0.098 Mult
 6: 0 Offset
;============ WIND DIRECTION ==============
13: Excite-Delay (SE) (P4)
 1: 1 Reps
 2: 5 2500 mV Slow Range
 3: 9 SE Channel
 4: 1 Excite all reps w/Exchan 1
 5: 2 Delay (units 0.01 sec)
 6: 2500 mV Excitation
 7: 6 Loc [Vrikt____]
 8: 0.142 Mult
 9: -135 Offset

14: IF (X<=F) (P89)
 1: 6 X Loc [Vrikt____]
 2: 4 <
 3: 0 F
 4: 30 Then Do

15: Z=X+F (P34)
 1: 6 X Loc [Vrikt____]
 2: 360 F
 3: 6 Z Loc [Vrikt____]

16: End (P95)

;============= GLOBAL RADIATION ==============
17: Volts (SE) (P1)
 1: 1 Reps
 2: 33 25 mV 50 Hz Rejection Range
 3: 10 SE Channel
 4: 7 Loc [Sol__W_m_]
 5: 116.55 Mult
 6: 0.0000 Offset

;============= PRECIPITATION ==============
18: Pulse (P3)
 1: 1 Reps
 2: 2 Pulse Input Channel
 3: 2 Switch Closure, All Counts
 4: 8 Loc [Nederb_mm]
 5: 0.16 Mult
 6: 0.0 Offset

19: Internal Temperature (P17)
 1: 9 Loc [Logtemp_C]

;============= OUTPUT ======================
20: If time is (P92)
 1: 0 Minutes (Seconds --) into a
 2: 60 Interval (same units as above)
 3: 10 Set Output Flag High

21: Set Active Storage Area (P80)
 1: 1 Final Storage Area 1
 2: 101 Array ID

22: Real Time (P77)
1: 1220 Year,Day,Hour/Minute (midnight = 2400)

23: Average (P71)
1: 4 Reps
2: 1 Loc [T1_bur__.C]

24: Wind Vector (P69)
1: 1 Reps
2: 1 Samples per Sub-Interval
3: 0 S, 1, & (1) Polar
4: 5 Wind Speed/East Loc [Vhast_m_s]
5: 6 Wind Direction/North Loc [Vrikt___]

25: Average (P71)
1: 1 Reps
2: 7 Loc [Sol__W_m_]

26: Totalize (P72)
1: 1 Reps
2: 8 Loc [Nederb_mm]

27: Average (P71)
1: 2 Reps
2: 11 Loc [TempVent]

28: Maximize (P73)
1: 1 Reps
2: 10 Value with Hr-Min
3: 5 Loc [Vhast_m_s]

29: Serial Out (P96)
1: 71 SM192/SM716/CSM1

; ======== STORAGE DAILY MEANS AT MIDNIGHT ==============

30: If time is (P92)
1: 0 Minutes (Seconds --) into a
2: 1440 Interval (same units as above)
3: 10 Set Output Flag High

31: Set Active Storage Area (P80)
1: 1 Final Storage Area 1
2: 124 Array ID

32: Real Time (P77)
1: 1220 Year,Day,Hour/Minute (midnight = 2400)

33: Average (P71)
1: 4 Reps
2: 1 Loc [T1_bur__.C]

34: Maximize (P73)
1: 1 Reps
2: 10 Value with Hr-Min
3: 2 Loc [T2_skyd_C]

35: Minimize (P74)
1: 1 Reps
2: 10 Value with Hr-Min
3: 2 Loc [T2_skyd_C]

36: Maximize (P73)
1: 1 Reps
2: 10 Value with Hr-Min
3: 5 Loc [Vhast_m_s]

37: Wind Vector (P69)
1: 1 Reps
2: 1 Samples per Sub-Interval
3: 1 S, 1 Polar
4: 5 Wind Speed/East Loc [Vhast_m_s]
5: 6 Wind Direction/North Loc [Vrikt___]

38: Average (P71)
1: 1 Reps
2: 7 Loc [Sol__W_m_]

39: Totalize (P72)
1: 1 Reps
2: 8 Loc [Nederb_mm]

40: Sample (P70)
1: 1 Reps
2: 10 Loc [Batteri_V]

41: Average (P71)
1: 2 Reps
2: 11 Loc [TempVent]

42: Serial Out (P96)
1: 71 SM192/SM716/CSM1

43: If time is (P92)
1: 60 Minutes (Seconds --) into a
2: 1440 Interval (same units as above)
3: 10 Set Output Flag High

44: Set Active Storage Area (P80)
1: 1 Final Storage Area 1
2: 103 Array ID

45: Real Time (P77)
1: 1220 Year,Day,Hour/Minute (midnight = 2400)

; SAMPLE TEMP FOR COMPARISON WITH 3-HOURLY DATA OF OTHER STATIONS ======

46: Sample (P70)
1: 1 Reps
2: 2 Loc [T2_skyd_C]

47: If time is (P92)
1: 240 Minutes (Seconds --) into a
2: 1440 Interval (same units as above)
3: 10 Set Output Flag High

48: Set Active Storage Area (P80)
Final Storage Area 1

Array ID

Real Time (P77)
1: 1220 Year,Day,Hour/Minute (midnight = 2400)

Sample (P70)
1: 1 Reps
2: 2 Loc [T2_skyd_C]

If time is (P92)
1: 420 Minutes (Seconds --) into a
2: 1440 Interval (same units as above)
3: 10 Set Output Flag High

Set Active Storage Area (P80)
1: 1 Final Storage Area 1
2: 103 Array ID

Real Time (P77)
1: 1220 Year,Day,Hour/Minute (midnight = 2400)

Sample (P70)
1: 1 Reps
2: 2 Loc [T2_skyd_C]

If time is (P92)
1: 600 Minutes (Seconds --) into a
2: 1440 Interval (same units as above)
3: 10 Set Output Flag High

Set Active Storage Area (P80)
1: 1 Final Storage Area 1
2: 103 Array ID

Real Time (P77)
1: 1220 Year,Day,Hour/Minute (midnight = 2400)

Sample (P70)
1: 1 Reps
2: 2 Loc [T2_skyd_C]

If time is (P92)
1: 780 Minutes (Seconds --) into a
2: 1440 Interval (same units as above)
3: 10 Set Output Flag High

Set Active Storage Area (P80)
1: 1 Final Storage Area 1
2: 103 Array ID

Real Time (P77)
1: 1220 Year,Day,Hour/Minute (midnight = 2400)

Sample (P70)
1: 1 Reps
2: 2 Loc [T2_skyd_C]

63: If time is (P92)
1: 960 Minutes (Seconds --) into a
2: 1440 Interval (same units as above)
3: 10 Set Output Flag High

64: Set Active Storage Area (P80)
1: 1 Final Storage Area 1
2: 103 Array ID

65: Real Time (P77)
1: 1220 Year,Day,Hour/Minute (midnight = 2400)

66: Sample (P70)
1: 1 Reps
2: 2 Loc [T2_skyd_C]

67: If time is (P92)
1: 1140 Minutes (Seconds --) into a
2: 1440 Interval (same units as above)
3: 10 Set Output Flag High

68: Set Active Storage Area (P80)
1: 1 Final Storage Area 1
2: 103 Array ID

69: Real Time (P77)
1: 1220 Year,Day,Hour/Minute (midnight = 2400)

70: Sample (P70)
1: 1 Reps
2: 2 Loc [T2_skyd_C]

71: If time is (P92)
1: 1320 Minutes (Seconds --) into a
2: 1440 Interval (same units as above)
3: 10 Set Output Flag High

72: Set Active Storage Area (P80)
1: 1 Final Storage Area 1
2: 103 Array ID

73: Real Time (P77)
1: 1220 Year,Day,Hour/Minute (midnight = 2400)

74: Sample (P70)
1: 1 Reps
2: 2 Loc [T2_skyd_C]

*Table 2 Program
 01: 0.0000 Execution Interval (seconds)

*Table 3 Subroutines

End Program
1 [T1_bur__C] RW-- 2 1 Start ------- ---
2 [T2_skyd_C] RW-- 12 1 ----- ------ End
3 [T3_Rot__C] RW-- 2 1 Start ------- ---
4 [rH_Rot____] RW-- 2 1 ----- ------ ---
5 [Vhast_m_s] RW-- 4 1 ----- ------ ---
6 [Vrikt____] RW-- 4 2 ----- ------ ---
7 [Sol__W_m_] RW-- 2 1 ----- ------ ---
8 [Nederb_mm] RW-- 2 1 ----- ------ ---
9 [Logtemp_C] -W-- 0 1 ----- ------ ---
10 [Batteri_V] RW-- 2 1 ----- ------ ---
11 [TempVent] RW-- 2 1 ----- ------ ---
12 [HumVent] RW-- 2 1 ----- ------ ---
13 [__________] ----- 0 0 ----- ------ ---
14 [__________] ----- 0 0 ----- ------ ---
15 [__________] ----- 0 0 ----- ------ ---
16 [__________] ----- 0 0 ----- ------ ---
17 [__________] ----- 0 0 ----- ------ ---
18 [__________] ----- 0 0 ----- ------ ---
19 [__________] ----- 0 0 ----- ------ ---
20 [__________] ----- 0 0 ----- ------ ---
21 [Rs_Ro_T1] RW-- 1 1 ----- ------ ---
22 [Rs_Ro_T2] RW-- 1 1 ----- ------ ---
23 [Rs_Ro_ven] RW-- 1 1 ----- ------ ---
24 [__________] ----- 0 0 ----- ------ ---
25 [__________] ----- 0 0 ----- ------ ---
26 [__________] ----- 0 0 ----- ------ ---
27 [Rs_lo2] ----- 0 0 ----- ------ ---
28 [Temp2m] ----- 0 0 ----- ------ ---
29 [RelHum2m] ----- 0 0 ----- ------ ---
101 [__________] ----- 0 0 ----- ------ ---
103 [__________] ----- 0 0 ----- ------ ---
124 [__________] ----- 0 0 ----- ------ ---