1 Instrumentation

The TRS met station consisted of the following instruments during 2009

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Serial number</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt100</td>
<td></td>
<td>in Stevenson screen</td>
</tr>
<tr>
<td>Pt100</td>
<td></td>
<td>in Young screen</td>
</tr>
<tr>
<td>Young Wind Monitor</td>
<td></td>
<td>at 3 m</td>
</tr>
<tr>
<td>LiCor Li-200SB pyranometer</td>
<td></td>
<td>at 2 m</td>
</tr>
<tr>
<td>Tipping bucket precipitation</td>
<td></td>
<td>at 2 m</td>
</tr>
<tr>
<td>gauge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vent HygroClip T/Rh</td>
<td></td>
<td>at 2 m</td>
</tr>
<tr>
<td>CR10X-2M data logger</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 Notes on the station data

- Long break in data during winter due to power failure

3 Data coverage

- General data gap:
 2009-01-07 17:00:00 to 2009-03-27 10:00:00

4 Notes on data storage

Example of hourly data:
101,2009,185,1300,8.7021,8.8221,7.6951,58.49,3.4295,135.64,0.03752,356.5,0,0,0,10.153,1249,8.6837,8.895,7.8562,57.586,8.4004,1221,7.0976,1213,883.69
<table>
<thead>
<tr>
<th>Column</th>
<th>Example data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:</td>
<td>101</td>
<td>ID</td>
</tr>
<tr>
<td>02:</td>
<td>2009</td>
<td>Year</td>
</tr>
<tr>
<td>03:</td>
<td>191</td>
<td>Day of Year</td>
</tr>
<tr>
<td>04:</td>
<td>1600</td>
<td>hour-minute (hhmm)</td>
</tr>
<tr>
<td>05:</td>
<td>8.7021</td>
<td>2 Pt100 T in Stevenson screen)</td>
</tr>
<tr>
<td>06:</td>
<td>8.8221</td>
<td>3 Pt100 in new Young screen</td>
</tr>
<tr>
<td>07:</td>
<td>7.6951</td>
<td>4 Ventilated T</td>
</tr>
<tr>
<td>08:</td>
<td>58.49</td>
<td>5 Ventilated T</td>
</tr>
<tr>
<td>09:</td>
<td>3.4295</td>
<td>6 Mean horizontal wind speed</td>
</tr>
<tr>
<td>10:</td>
<td>135.64</td>
<td>7 resultant mean wind direction</td>
</tr>
<tr>
<td>11:</td>
<td>0.03752</td>
<td>8 Standard deviation of wind direction</td>
</tr>
<tr>
<td>12:</td>
<td>365.5</td>
<td>9 Global radiation</td>
</tr>
<tr>
<td>13:</td>
<td>0</td>
<td>10 Precipitation</td>
</tr>
<tr>
<td>14:</td>
<td>0</td>
<td>11 Not used</td>
</tr>
<tr>
<td>15:</td>
<td>0</td>
<td>12 Not used</td>
</tr>
<tr>
<td>16:</td>
<td>19.153</td>
<td>13 hourly max wind speed</td>
</tr>
<tr>
<td>17:</td>
<td>1249</td>
<td>14 time for max wind speed</td>
</tr>
<tr>
<td>18:</td>
<td>8.6837</td>
<td>15 Sample T Stevenson</td>
</tr>
<tr>
<td>19:</td>
<td>8.895</td>
<td>16 Sample T Young</td>
</tr>
<tr>
<td>20:</td>
<td>7.8562</td>
<td>17 Sample ventilated T</td>
</tr>
<tr>
<td>21:</td>
<td>57.586</td>
<td>18 Sample ventilated Rh</td>
</tr>
<tr>
<td>22:</td>
<td>8.4004</td>
<td>19 Max T</td>
</tr>
<tr>
<td>23:</td>
<td>1221</td>
<td>20 time for max T</td>
</tr>
<tr>
<td>24:</td>
<td>7.0976</td>
<td>21 Min T</td>
</tr>
<tr>
<td>25:</td>
<td>1213</td>
<td>22 time for min T</td>
</tr>
<tr>
<td>26:</td>
<td>883.69</td>
<td>23 Barometric pressure</td>
</tr>
</tbody>
</table>

Example of daily data summaries:
124,2009,185,2400,7.5788,7.8442,6.8219,62.238,11.134,1551,4.3545,131,12.799,245,
4.0137,121.46,180.49,0,14.007,0,0,883.37

Example of 'Synoptic' output:
103,2009,185,1300,8.895
5 Data files and content

TRSmet2009.csv Raw data file

TRS_met_2009_Barometric_pressure.csv
2009-01-01 01:00:00,876.7

TRS_met_2009_Precipitation.csv
Date-time, Precipitation
2009-01-01 01:00:00,0.00

TRS_met_2009_Radiation.csv
Date-time, Global radiation
2009-01-01 01:00:00,-1.05

TRS_met_2009_Relative_humidity.csv
Date-time, Vented Rh, ssample ventilated Rh
2009-01-01 01:00:00,78.2,83.9

TRS_met_2009_Temperature.csv
Date-time, hourly average T (Stevenson), hourly average T (Young), hourly average vented T/Rh, sample T (Stevenson), Sample T (Young), sample T vent, max T vent, time for max T vent, min T vent, time for min T vent
2009-01-01 01:00:00,-13.16,-12.82,-13.50,-12.95,-12.48,-13.64,-13.15,3,-13.81,45

TRS_met_2009_Wind.csv
Date-time, Mean horizontal wind speed, resultant mean wind direction, hourly max wind speed, time of max wind spd
2009-01-01 01:00:00,1.9,311.2,0.0328,4.00,3

TRS_met_2009_Daily_data.csv
Data columns follows description above except last two columns (not used)
2009-01-02 00:00:00,-12.52,-12.14,-12.93,71.0,-11.15,757,-13.41,1340,13.8,1659,2.7,193.3,-0.8,0.0,12.57

TRS_met_2009_Synop_data.csv
Date-time, sample temperature
2009-01-01 01:00:00,-12.48

The data collected during 2009 is summarized the figure 1 and Table 1.
Figure 1: Summary of meteorological data from Tarfala Research Station automatic weather station 2009.
Table 1: Monthly averages of meteorological parameters from the Tarfala Research Station automatic weather station 2009.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average air temperature (Stevenson) (°C)</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
</tr>
<tr>
<td>− − −</td>
<td>−5.6</td>
<td>1.8</td>
<td>4.1</td>
<td>7.9</td>
<td>8.5</td>
<td>3.3</td>
<td>−3.5</td>
<td>−5.8</td>
<td>−12.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average air temperature (Young) (°C)</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
</tr>
<tr>
<td>− − −</td>
<td>−5.1</td>
<td>2.4</td>
<td>4.6</td>
<td>8.2</td>
<td>8.9</td>
<td>3.8</td>
<td>−3.0</td>
<td>−5.2</td>
<td>−11.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average air temperature (°C)</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
</tr>
<tr>
<td>− − −</td>
<td>−6.4</td>
<td>0.9</td>
<td>3.3</td>
<td>7.1</td>
<td>7.7</td>
<td>2.6</td>
<td>−4.1</td>
<td>−6.2</td>
<td>−12.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive degree sum (°C)</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
</tr>
<tr>
<td>− − −</td>
<td>111</td>
<td>1204</td>
<td>2860</td>
<td>5257</td>
<td>5923</td>
<td>2332</td>
<td>174</td>
<td>116</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average relative humidity (%)</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
</tr>
<tr>
<td>− − −</td>
<td>75.3</td>
<td>77.0</td>
<td>71.1</td>
<td>82.2</td>
<td>80.4</td>
<td>82.5</td>
<td>73.9</td>
<td>86.1</td>
<td>71.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average incoming global radiation (W m⁻²)</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
</tr>
<tr>
<td>− − −</td>
<td>103.2</td>
<td>149.3</td>
<td>158.1</td>
<td>105.3</td>
<td>80.0</td>
<td>37.9</td>
<td>21.2</td>
<td>−1.8</td>
<td>−4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global incoming energy sum (W m⁻²)</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
</tr>
<tr>
<td>− − −</td>
<td>76992</td>
<td>111029</td>
<td>117482</td>
<td>78348</td>
<td>61691</td>
<td>28667</td>
<td>17930</td>
<td>1152</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totalized precipitation (mm)</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
</tr>
<tr>
<td>− − −</td>
<td>36.16</td>
<td>61.44</td>
<td>66.72</td>
<td>197.92</td>
<td>138.08</td>
<td>201.44</td>
<td>9.12</td>
<td>1.28</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average wind speed (m s⁻¹)</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
</tr>
<tr>
<td>− − −</td>
<td>3.5</td>
<td>3.4</td>
<td>2.9</td>
<td>2.7</td>
<td>2.4</td>
<td>4.5</td>
<td>3.5</td>
<td>1.9</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average barometric pressure (hPa)</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
</tr>
<tr>
<td>− − −</td>
<td>880.1</td>
<td>882.2</td>
<td>885.8</td>
<td>882.6</td>
<td>883.6</td>
<td>872.8</td>
<td>878.6</td>
<td>872.5</td>
<td>876.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Logger program

5.1 Program for 2009 (same as for end of 2008)

;[CH10X]
*Table 1 Program
01: 10.0000 Execution Interval (seconds)

: Check battery voltage
; and stop execution if lower than 9.7V
1: Batt Voltage (P10)
1: 10 X Loc [Battery]
2: If (X<>F) (P89)
1: 10 X Loc [Battery]
2: 4 <
3: 9.7 F
4: 0 Go to end of Program Table

; AIR TEMPERATURE
; Measure R/R0 for old met cage Rt100
3: 3W Half Bridge (P7)
1: 1 Reps
2: 33 25 mV 50 Hz Rejection Range
3: 1 SE Channel
4: 2 Excite all reps w/Exchan 2
5: 2100 mV Excitation
6: 22 Loc [R_R0_T_1]
7: 95.969 Mult
8: 0 Offset

; Measure R/R0 for Young screen Rt100
4: 3W Half Bridge (P7)
1: 1 Reps
2: 33 25 mV 50 Hz Rejection Range
3: 3 SE Channel
4: 2 Excite all reps w/Exchan 2
5: 2100 mV Excitation
6: 23 Loc [R_R0_T_2]
7: 100.2 Mult
8: 0 Offset

; Calculate T for both Rt100
5: Temperature RTD (P16)
1: 2 Reps
2: 22 R/R0 Loc [R_R0_T_1]
3: 1 Loc [T_1]
4: 1 Mult
5: 0 Offset

; VENTILATED T & Rh
; Measure temperature from ventilated
; HygroClip sensor
6: Volt (Diff) (P2)
1: 1 Reps
2: 35 2500 mV 50 Hz Rejection Range
3: 3 DIFF Channel
4: 3 Loc [T_vent]
5: .1 Mult
6: -40 Offset

; Measure humidity from ventilated
; HygroClip sensor
7: Volt (Diff) (P2)
1: 1 Reps
2: 35 2500 mV 50 Hz Rejection Range
3: 4 DIFF Channel
4: 4 Loc [rH_vent]
5: .1 Mult
6: 0.0 Offset

; WIND
; Measure wind speed on Young Wind Monitor
8: Pulse (P3)
1: 1 Reps
2: 1 Pulse Channel 1
3: 21 Low Level AC, Output Hz
4: 5 Loc [Wind_spd]
5: .998 Mult
6: 0 Offset

; Measure wind direction on Young Wind Monitor
9: Excite-Delay (SE) (P4)
1: 1 Reps
2: 5 2500 mV Slow Range
3: 9 SE Channel
4: 1 Excite all reps w/Exchan 1
5: 2 Delay (0.01 sec units)
6: 2500 mV Excitation
7: 6 Loc [Wind_dir]
8: .142 Mult
9: -135 Offset
; Make corrections to wind direction
10: If (X<>F) (P89)
1: 6 X Loc [Wind_dir]
2: 4 <
3: 0 F
4: 30 Then Do
5: End (P95)
11: Z=X+F (P34)
1: 6 X Loc [Wind_dir]
2: 360 F
3: 6 Z Loc [Wind_dir]
12: End (P95)

;---
; G L O B A L R A D I A T I O N
; Measure Li200s Pyranometer
13: Volt (SE) (P1)
1: 1 Reps
2: 33 25 mV 50 Hz Rejection Range
3: 10 SE Channel
4: 7 Loc [Li200s]
5: 116.55 Mult
6: 0 Offset

;---
; P R E C I P I T A T I O N
; Measure tipping bucket rain gauge
14: Pulse (P3)
1: 1 Reps
2: 2 Pulse Channel 2
3: 2 Switch Closure, All Counts
4: 8 Loc [Precip]
5: .16 Mult
6: 0 Offset

;---
; I N T E R N A L T E M P E R A T U R E
15: Internal Temperature (P17)
1: 9 Loc [T_int]

;---
; B A R O M E T R I C P R E S S U R E
16: If time is (P92)
1: 59 Minutes (Seconds --) into a
2: 60 Interval (same units as above)
3: 48 Set Port 8 High
17: If time is (P92)
1: 0 Minutes (Seconds --) into a
2: 60 Interval (same units as above)
3: 30 Then Do

18: Volt (SE) (P1)
1: 1 Reps
2: 15 2500 mV Fast Range
3: 11 SE Channel
4: 11 Loc [P_mb]
5: 0.2 Mult
6: 600 Offset
19: Do (P86)
1: 58 Set Port 8 Low
20: End (P95)

;---
; H O U R L Y O U T P U T
21: If time is (P92)
1: 0 Minutes (Seconds --) into a
2: 60 Interval (same units as above)
3: 10 Set Output Flag High (Flag 0)
22: Set Active Storage Area (P80)
1: 1 Final Storage Area 1
2: 101 Array ID
23: Real Time (P77)
 1: 1220 Year, Day, Hour/Minute (midnight = 2400)
24: Resolution (P78)
 1: 1 High Resolution
 ; Store average unvent and vent T and Rh
25: Average (P71)
 1: 4 Reps
 2: 1 Loc [T_1]
26: Resolution (P78)
 1: 1 High Resolution
 ; Store wind speed, dir and std dev
27: Wind Vector (P69)
 1: 1 Reps
 2: 1 Samples per Sub-Interval
 3: 0 S, theta(1), sigma(theta(1)) with polar sensor
 4: 5 Wind Speed/East Loc [Wind_spd]
 5: 6 Wind Direction/North Loc [Wind_dir]
28: Resolution (P78)
 1: 1 High Resolution
 ; Store average global rad
29: Average (P71)
 1: 1 Reps
 2: 7 Loc [Li200S]
 ; Store hourly precipitation
30: Totalize (P72)
 1: 1 Reps
 2: 8 Loc [Precip]
 ; no data
31: Average (P71)
 1: 2 Reps
 2: 12 Loc [________]
32: Resolution (P78)
 1: 1 High Resolution
 ; Store maximum wind speed during last hour
33: Maximum (P73)
 1: 1 Reps
 2: 10 Value with Hr-Min
 3: 5 Loc [Wind_spd]
34: Resolution (P78)
 1: 1 High Resolution
 ; Store transient unvent and vent T and Rh
35: Sample (P70)
 1: 4 Reps
 2: 1 Loc [T_1]
36: Resolution (P78)
 1: 1 High Resolution
 ; Store max vent T
37: Maximum (P73)
 1: 1 Reps
 2: 10 Value with Hr-Min
 3: 3 Loc [T_vent]
38: Resolution (P78)
 1: 1 High Resolution
 ; Store min vent T
39: Minimum (P74)
 1: 1 Reps
 2: 10 Value with Hr-Min
 3: 3 Loc [T_vent]
40: Resolution (P78)
 1: 1 High Resolution
41: Sample (P70)
 1: 1 Reps
 2: 11 Loc [P_mb]

; DAILY OUTPUT
42: If time is (P92)
1: 0 Minutes (Seconds --) into a
2: 1440 Interval (same units as above)
3: 10 Set Output Flag High (Flag 0)

43: Set Active Storage Area (P80)
1: 1 Final Storage Area 1
2: 124 Array ID

44: Real Time (P77)
1: 1220 Year,Day,Hour/Minute (midnight = 2400)

45: Resolution (P78)
1: 1 High Resolution

; Store daily average unvent and vent T & Rh
46: Average (P71)
1: 4 Reps
2: 1 Loc [T_1]

47: Resolution (P78)
1: 1 High Resolution

; Store daily max unvent T
48: Maximum (P73)
1: 1 Reps
2: 10 Value with Hr-Min
3: 2 Loc [T_2]

49: Resolution (P78)
1: 1 High Resolution

; Store daily min unvent T
50: Minimum (P74)
1: 1 Reps
2: 10 Value with Hr-Min
3: 2 Loc [T_2]

51: Resolution (P78)
1: 1 High Resolution

; Store daily max wind speed
52: Maximum (P73)
1: 1 Reps
2: 10 Value with Hr-Min
3: 5 Loc [Wind spd]

53: Resolution (P78)
1: 1 High Resolution

; Store average wind vector
54: Wind Vector (P69)
1: 1 Reps
2: 1 Samples per Sub-Interval
3: 1 S, theta(1) with polar sensor
4: 5 Wind Speed/East Loc [Wind spd]
5: 6 Wind Direction/North Loc [Wind_dir]

55: Resolution (P78)
1: 1 High Resolution

; Store daily avg global radiation
56: Average (P71)
1: 1 Reps
2: 7 Loc [Li200S]

; Store daily precipitation
57: Totalize (P72)
1: 1 Reps
2: 8 Loc [Precip]

; Store sample of battery voltage
58: Sample (P70)
1: 1 Reps
2: 10 Loc [Battery]

; no data
59: Average (P71)
1: 2 Reps
2: 12 Loc [________]

60: Resolution (P78)
1: 1 High Resolution

61: Average (P71)
1: 1 Reps
2: 11 Loc [P mb]
SYNOPTIC OUTPUT

transient T data is stored every 3 hrs
according to synoptic standards.

1: 60 Minutes (Seconds --) into a
2: 180 Interval (same units as above)
3: 10 Set Output Flag High (Flag 0)

Set Active Storage Area (P80)
1: Final Storage Area 1
2: 103 Array ID

Real Time (P77)
1: 1220 Year,Day,Hour/Minute (midnight = 2400)

Resolution (P78)
1: High Resolution

Sample (P70)
1: 1 Reps
2: Loc [T_2]

Table 2 Program
01: 0.0000 Execution Interval (seconds)

Table 3 Subroutines

--- End Program ---

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[T_1] RW-- 3 1</td>
<td>Start ------ ---</td>
</tr>
<tr>
<td>2</td>
<td>[T_2] RW-- 6 1</td>
<td>------ ------ End</td>
</tr>
<tr>
<td>3</td>
<td>[T_vent] RW-- 5 1</td>
<td>------ ------ ---</td>
</tr>
<tr>
<td>4</td>
<td>[rK_vent] RW-- 3 1</td>
<td>------ ------ ---</td>
</tr>
<tr>
<td>5</td>
<td>[Wind_spd] RW-- 4 1</td>
<td>------ ------ ---</td>
</tr>
<tr>
<td>6</td>
<td>[Wind_dir] RW-- 4 2</td>
<td>------ ------ ---</td>
</tr>
<tr>
<td>7</td>
<td>[Li2005] RW-- 2 1</td>
<td>------ ------ ---</td>
</tr>
<tr>
<td>8</td>
<td>[Precip] RW-- 2 1</td>
<td>------ ------ ---</td>
</tr>
<tr>
<td>9</td>
<td>[T_int] -W-- 0 1</td>
<td>------ ------ ---</td>
</tr>
<tr>
<td>10</td>
<td>[Battery] RW-- 2 1</td>
<td>------ ------ ---</td>
</tr>
<tr>
<td>11</td>
<td>[P_mb] RW-- 2 1</td>
<td>------ ------ ---</td>
</tr>
<tr>
<td>12</td>
<td>[_______] R-- 2 0</td>
<td>------ ------ ---</td>
</tr>
<tr>
<td>13</td>
<td>[_______] R-- 2 0</td>
<td>------ ------ ---</td>
</tr>
<tr>
<td>14</td>
<td>[_______] R-- 2 0</td>
<td>------ ------ ---</td>
</tr>
<tr>
<td>15</td>
<td>[_______] R-- 2 0</td>
<td>------ ------ ---</td>
</tr>
<tr>
<td>16</td>
<td>[_______] R-- 2 0</td>
<td>------ ------ ---</td>
</tr>
<tr>
<td>17</td>
<td>[_______] R-- 2 0</td>
<td>------ ------ ---</td>
</tr>
<tr>
<td>18</td>
<td>[_______] R-- 2 0</td>
<td>------ ------ ---</td>
</tr>
<tr>
<td>19</td>
<td>[_______] R-- 2 0</td>
<td>------ ------ ---</td>
</tr>
<tr>
<td>20</td>
<td>[_______] R-- 2 0</td>
<td>------ ------ ---</td>
</tr>
<tr>
<td>21</td>
<td>[_______] R-- 2 0</td>
<td>------ ------ ---</td>
</tr>
<tr>
<td>22</td>
<td>[R_B0_T_1] RW-- 1 1</td>
<td>------ ------ ---</td>
</tr>
<tr>
<td>23</td>
<td>[R_B0_T_2] RW-- 1 1</td>
<td>------ ------ ---</td>
</tr>
</tbody>
</table>